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I. INTRODUCTION 

The objective of this project is to evaluate the task and support environments 
associated with the Joint Typhoon Warning Center (JTWC) watch floor and provide 
recommendations, with the ultimate goal to improve forecast accuracy. 

In support of this objective, Dr. Alex Kirlik (AK) and I visited the JTWC during 
the West Pacific typhoon season in November 2010, to observe, conduct interviews, and 
review documents related to the task environment of the forecasters and satellite analysts. 
AK was present at the JTWC on November 12 and November 15-19, while I was present 
November 15-18. 

AK’s report is attached as an appendix. He finds that, at this time, factors in the 
task environment are very likely limiting forecast accuracy. In particular, system-induced 
practical and cognitive limits on the forecaster’s repeatability, i.e., the ability to 
reproduce an identical forecast given identical information, limits forecast accuracy. 
Thus, forecasters’ performance and forecast accuracy could be enhanced by an 
information integration system with recommended features, by more precise standard 
operating procedures, and by training and feedback better matched to the task. 
Developing alternative performance metrics would be relatively low-cost and can be 
implemented fairly quickly. If used internally and externally, these metrics have the 
potential to improve both forecast accuracy and user satisfaction. 

The remainder of this section gives findings and recommendations, with 
references to AK’s report. Section II discusses performance evaluation metrics, why they 
are an important part of AK’s findings, and provides a supplementary explanation of the 
effect of inconsistency on mean absolute track error. Section III highlights the problems 
we identified with current assessments of the human contribution to the official forecast, 
as well as the potential value of a more accurate quantification of this contribution, and 
possible approaches to its measurement. While AK’s report focuses on the track forecast, 
Section IV describes special challenges to forecasting intensity. 

A. PRINCIPAL FINDINGS 

1. The human forecaster1 is squeezed by the time and mental workload 
requirements of the data collection (up to five steps to load a single image) 
and integration2 process at the beginning of the forecasting cycle and 
forecast production at the end of the forecasting cycle. In the middle, there 
is a restricted time for the thinking portion of the process (including 
comparing model output with observations, evaluating model behavior, 
and assessing the current state of the atmosphere and its likely future 

                                                
1 Hereafter, any member of the watch team, including Typhoon Duty Officer (TDO), Typhoon Duty 
Assistant (TDA), and satellite analyst will be referred to as forecasters. 
2 This is meant to capture synthesizing information mentally, e.g., mental overlays, awareness of relative 
importance/quality, but not the step of processing it or integrating it to produce judgments/assessments.	
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evolution), where we expect the human-in-the-loop (HITL) can add the 
most value. Moreover, there are often distractions and competing demands 
on the forecasters’ time throughout the cycle, such as calls from 
customers. This indicates that forecasters would perform better if the time 
requirement and mental workload were reduced in the data-collection and 
integration phase and the forecast-production phase. Recommendations 1, 
2, 6, and 7 in Section I.B respond to this finding. 

2. As expected, the forecasters’ task environment is information rich. The 
quantity of information available and potentially available may itself be 
limiting forecasters’ performance through information overload. Perhaps 
more important, there are substantial practical barriers to forecasters’ 
acquiring and synthesizing the relevant information (guidance) and  
meta-information (e.g., age, and validity of images and models) that 
unnecessarily restrict the time available for forecasters to assess the 
current state of the system. In addition, it’s known that human experts 
(presumably including JTWC) are more accurate when the information 
acquisition is separated from its analysis (see citations in Stewart & Lusk, 
1994). Recommendations 1, 2, 3, 6 and 8 in Section I.B respond to this 
finding. 

3. The primary verification metrics used by the JTWC may be an 
impediment to improving forecast accuracy. The mean absolute track error 
and mean absolute intensity error metrics match neither: 

(a) forecasters’ mental process, in which they assess future speed and 
direction of a storm, nor 

(b) customers’ decision criteria, e.g., tropical cyclone (TC) conditions 
of readiness (TCCOR) definitions or other considerations affecting 
user acceptability. 

Recommendations 3, 4, 5, and 9 in Section I.B respond to this finding. 

4. Currently, there is no way to evaluate the contribution to forecasts 
provided by HITLs. Often the mean track error for the consensus track 
(CONW) is compared with the mean track error for the JTWC official 
(OFCL) track. However, the CONW benefits from HITL intervention at 
two or more points in its generation, and therefore does not represent a 
purely automated product. Recommendations 6 and 7 in Section I.B 
respond to this finding. 
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B. RECOMMENDATIONS 

1. Improved information integration system. As AK recommends (Section 
5-3-1, p. 32), a high-value intervention would be acquisition of an 
information integration system and interface that makes information 
acquisition faster and with few, if any, actions required by the forecaster. 
Section 2.3 of AK’s report includes details on interface features that 
research shows would support enhanced forecaster performance, including 
consistent and automatic geo-temporal overlays such that guidance from 
multiple information sources are matched geographically and temporally. 
An additional feature that might help improve forecaster accuracy would 
be visual indications of the validity (predictive contribution) of guidance 
when that validity changes from one forecast scenario to another. For 
example, for the satellite analyst, the age of various images and automated 
products may vary across forecast cycles; the more recent each product is, 
the higher its validity. The same applies to numerical model tracks. 

2. Detailed standard operating procedures for forecast process. A further 
intervention that would tend to reduce human-induced inconsistency 
would be detailed standard operating procedures for the forecast process, 
perhaps in the form of checklists (see Appendix, Section 5-3-2, informed 
by results of additional studies as described in Appendix 5-5 and 
Recommendations 6 and 9). 

3. Training, feedback and interface features matched to the forecasting 
task. Matching all elements of the forecast environment to the mental 
process, with consideration of the relationship between the speed and 
direction errors and track error (FTE), could improve forecast accuracy 
(see Appendix, Sections 3, 5-1, and 5-2). 

The timing of recurvature is another forecaster assessment that, with speed 
and direction, determines track positions. This should be considered as an 
element of training and the design of diagnostic and feedback metrics (see 
Recommendation 4). 

In addition to synthesizing a large volume of current guidance, forecasters 
must also subjectively combine the most recent guidance with prior 
guidance to produce a forecast. AK recommends (Appendix, Section 5-6) 
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that training and perhaps additional relevant meta-information could 
improve their performance in this difficult task.3 

4. Alternative performance metrics. The mismatch between the primary 
verification metrics and the forecasting task as well as customers’ needs 
suggests that the JTWC may want to adopt alternative performance 
metrics that provide more relevant and therefore effective feedback to the 
forecasters, and potentially to customers. These metrics may be used 
primarily for training, feedback, and diagnosis, in particular if existing 
metrics are mandated external to the organization. If well-designed and 
used, they could still improve the accuracy of the existing mean absolute 
error metrics (see Appendix, Sections 3 and 5-7, and Section II below). 

5. Consideration of alternative product formats. AK recommends 
alternative product formats to improve communication of uncertainty in 
the track forecast (Appendix, Section 5-7). In addition to the issues 
discussed by AK, alternative product formats could address the 
fundamental mismatch between users’ information requirements and 
interpretation process and the JTWC’s forecast fields. The language of 
TCCOR definitions provides one (of many) examples of this mismatch. 

The following are recommendations for further studies. 
 

6. Study the effect of a go-with-CON feature. AK recommends (Sections 
5-4 and 2.4, Item 5) implementing a feature in the automated tropical 
cyclone forecasting system (ATCF) that allows the forecaster to choose to 
allow the system to automatically generate an OFCL forecast based on the 
automated guidance, i.e., the CONW track, the statistical typhoon intensity 
prediction scheme (STIPS) intensity, and the DRCL CLIPER (climatology 
and persistence, Knaff et al., 2007) wind radii. This could improve error 
statistics by eliminating variability due to human factors in situations in 
which the human forecaster does not expect to be able to add value over 
and above the automated products, and by reducing the forecaster 
workload required to “lay-down” the OFCL forecast when the forecaster 
determines he cannot add value over and above the automated products. 
Whether the availability of this feature adds value, and under what 
circumstances deviations add value, should be studied (see Appendix, 
Sections 5-4 and 5-5). 

                                                
3 A related, but distinct consideration is regression to the mean or to climatology. Numerical models’ 
predictive validity falls off quickly with lead time, as does the predictive power of satellite imagery and 
recent observations. Therefore, the forecast should reflect a combination of guidance and long-run typical 
storm behavior (climatology), where the weight applied to climatology increases at longer leads. 
Forecasters’ long-lead likely reflect a tendency to long-run typical behavior of storms in the region, which 
may explain, in part, why the performance of OFCL track relative to CONW increases at longer leads. The 
models do not regress to climatology, while the human does. However, it is common for human experts to 
“anchor” (and therefore assign too much weight to) the first guidance they receive, and therefore training to 
create optimal regression to long-term patterns might improve forecast accuracy, especially at long leads. 
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The go-with-CON feature could be made the default starting point for the 
warning product within the ATCF, or it could be a feature that needs to be 
selected. The ability to deviate from the automated product would 
nevertheless be preserved. When the forecaster determines that it is 
appropriate, he would be able to modify any or all forecast fields 
(positions, intensities, and radii at all leads), and the remaining automated 
fields would automatically become the OFCL forecast fields. 

Alternatively, the automatic forecast could adjust the output from the 
automated products to improve performance with respect to the  
user-acceptability metrics discussed in Recommendation 9 and Section 
II.C. For example, it could reflect a weighted average of the prior official 
forecast and the automated products. The goal is to automatically produce 
a forecast that reflects what the forecaster intends to do by combining 
automated products with persistence, with respect to prior official 
forecasts, while reducing workload and unintentional (human-induced) 
variability. 

7. Quantify the effect of the HITL. As discussed in Finding 4 and Section 
III, there is currently no way to measure the value of the HITL. In order to 
understand both how and when the human forecaster adds value, and seek 
to increase that value, a preliminary step is to measure it. For example, 
research has shown that in other environments, human experts can add 
value relative to models in situations of high uncertainty. Therefore, a 
near-term research question is whether the JTWC’s accuracy statistics 
outperform consensus in certain identifiable situations, such as high 
uncertainty, or situations reflecting particular patterns of disagreement 
among the numerical models. Once the value of the HITL can be 
measured, the next step is to identify situations in which the HITL 
improves forecast accuracy, relative to automated products. 

8. Conduct Lens Model Analysis of Intensity Forecasts. Despite 
improvements in guidance, TC intensity forecast error has not decreased 
significantly in the last 20 years (DeMaria, Knaff and Sampson, 2007). 
The task environment faced by TC forecasters has many characteristics 
known to challenge human judgment. As discussed in Section IV, the 
intensity forecast may be even more challenging than the track forecast. In 
the JTWC, these factors are compounded by personnel turnover. A lens 
model analysis (described in the Appendix, Section 4 and Stewart, 1990, 
and applied by Stewart, Roebber & Bosart, 1997) of the forecasting and 
verification processes can quantify these effects and diagnose specific 
sources of error. This framework has been used to study subjective 
judgment in many contexts, including aviation and military applications 
(Kirlik, 2006). In the context of TC intensity forecasting, some possible 
sources of error are inconsistency in interpreting images and discounting 
aging guidance, redundancy in information content and cognitive errors 
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like overweighting assessments of correlated experts or sources. The 
results may suggest interventions that could improve TC intensity forecast 
accuracy (Stewart & Lusk, 1994). 

9. Develop and implement user-acceptability metrics. JTWC’s customers 
care about forecast characteristics other than accuracy. Therefore, it is 
appropriate to develop measures of user acceptability to capture the value 
the JTWC adds with respect to these other considerations.  
User-acceptability metrics, complementary to accuracy metrics, can be 
used internally to determine whether the OFCL forecast’s deviations from 
automated products are the result of appropriate adjustments and 
externally to document user value. Examples of forecast characteristics for 
which metrics could be designed include jerkiness (nonsmoothness) of a 
given forecast track, jumpiness of a track from update to update, and 
frequency of changes to TCCOR settings that would be induced by use of 
the forecast. 
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II. PERFORMANCE EVALUATION METRICS 

AK’s report has an extensive discussion of the implications of the primary 
performance metric used by the JTWC—mean absolute error (in track and intensity). At 
the beginning of this study, we did not anticipate that some of the most important 
findings would relate to the verification process. However, performance measurement 
can have a significant impact on performance. First, forecasters (like other experts) learn 
from feedback. When the feedback is highly relevant to the task and forecasters can 
match their measured performance with their experience of their task, their ability to 
learn from prior performance and improve their performance is enhanced. 

Second, metrics create an incentive to perform well with respect to the metric (in 
other words, “what gets measured gets managed”). Incentives are related to feedback, but 
distinct. Even if forecasters’ primary objective is not fully aligned with the performance 
metric, they feel rewarded by performing well with respect to the published metrics, 
which could cause them to slightly and unconsciously adjust their forecasts to improve 
performance metrics to the detriment of their objective. For example, the forecasters’ 
responsibility to their customers (and therefore their underlying objective) may require 
them to err on the side of caution or consistency with prior forecasts when assets are 
threatened, or to produce a meteorologically plausible track. To the extent that they 
experience a competing incentive to reduce track error (FTE), they may reduce the value 
of the product to the customer. 

A. IMPACT OF INCONSISTENCY 

In Section 3.2, AK describes how imprecision (which can be created by human 
inconsistency) increases mean absolute error. To expand on the possibly counterintuitive 
point that imprecision adds to error, and does not cancel itself out, an additional 
explanation follows. 

Figure 1 represents a single forecast, at a single lead, and its verification. The best 
track (verifying) position is shown in black. At the time he issues the forecast, the 
forecaster does not know the best-track position, but has a best guess, whose location is 
shown in green. If the forecaster were able to precisely forecast the best-guess position, 
the track error would be R , the distance between the best guess and the best track. 
However, he can’t precisely issue the best-guess forecast. The reasons include: 

• Interface barriers, e.g., pixilation in the forecasting interface and imperfect hand 
control of the mouse in laying in a forecast track line;4 and                                                 

4 In ATCF, the representation of the model and CONW tracks is forecast positions connected by straight 
lines. However, the representation forecasters (and, eventually, users) get of the OFCL forecast is forecast 
positions connected by curved lines. When forecasters (or, presumably, users) see the curved lines, they 
think that’s a representation of the track the storm is forecast to follow. For this reason, forecasters 
sometimes adjust track positions to make those curved lines look more realistic (sometimes they might 
show a stair-step pattern or other non-meteorological artifact of the way the curves are generated), so the 
forecaster will massage the positions to get lines that look more realistic. 
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• Imperfect forecasting repeatability, due to impediments to perfect, machine-like 
reliability, e.g., fatigue, time pressure, overcaution due to recent forecast bust or 
potential threat to an asset, day-to-day variations in set of guidance used, order in 
which they were viewed, lack of time to thoroughly evaluate all guidance. 

 

Figure 1: Model of the effect of imprecision on forecast error. 

Therefore, the actual forecast issued will not coincide precisely with the best 
possible guess. In Figure 1, this imprecision is modeled such that the actual forecast 
issued is a distance r  from the best guess position, and any point at distance r  (the red 
circle) is equally likely.5 Examples of possible forecast positions are shown in red. 

While the intuition might be that half the time imprecision will add to the error 
and half the time it will reduce the error, Figure 1 shows otherwise. All points on the red 
circle that are outside the blue circle have greater FTE than the best-guess position, and 
more than half the red circle is outside the blue circle. The forecast position shown in 
deep pink is an example of a forecast position that’s on the half of the red circle closest to 
the best-track position, yet has larger FTE than the best track position. Since all points on 
the red circle are equally likely, the probability that imprecision increases FTE is greater 
than 50%. On average, imprecision increases track error. 

B. MISMATCH BETWEEN METRICS AND FORECASTING PROCESS 

In Section 3.2, AK describes the mental process that forecasters appear to follow 
in determining their track forecast—assessing the anticipated speed and direction of the 
storm, and then turning this into track positions. AK describes the nonlinear and 
asymmetric (for positive and negative errors) effect of errors in the directly-assessed 
variables (speed and direction) on FTE. 

                                                
5 The general result is unchanged if the distance r  is modeled with a probability distribution rather than as 
a constant, because the effect that imprecision adds to error, on average, holds for every nonzero value of r
. If, for some reason, imprecision is distributed such that not all directions are equally likely, then the 
general result could change. 

Best	
  track	
  
position

Best	
  
guess	
  
position

Forecast	
  
position
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These insights explain an observed slow bias in OFCL track forecasts. AK’s 
analysis (see, in particular, Figure 3-8) indicates that negative errors in speed will 
produce smaller FTE than positive errors. This would incentivize forecasters to bias their 
forecasts on the slow side. Forecasters may have intuitively, or perhaps even consciously, 
detected this effect, and may be biasing their track and speed assessments accordingly. 
This supports the belief that verification metrics affect forecaster behavior and 
interventions that provide incentives and feedback based on the JTWC’s most important 
objectives could improve forecaster performance, with respect to those objectives, 
discussed in Section II.C. 

While AK’s figures show FTE as a function of proportional error in speed, the 
effect holds for absolute distance error as well. In other words, when direction error is 
less than 90°, predicting a position 10 nautical miles (nmi) too close to the current 
position produces a lower FTE than predicting a position 10 nmi too far away, and even a 
lower FTE than a forecast position that is the correct distance (and speed), but the wrong 
direction. 

C. USER ACCEPTABILITY 

Although the JTWC summarizes the performance of its official forecast with 
mean absolute track error and mean absolute intensity error, the forecasting staff is aware 
that small changes in the official forecast that may reflect insignificant differences in the 
understanding of the meteorology can have substantial operational impacts. Numerical 
models and their resulting consensus, on the other hand, are tuned to optimize long-run 
accuracy statistics described above without consideration of the effects of minor changes 
on customers’ operations. The CONW track is a simple average of a set of 
meteorologically plausible tracks; it is not constrained to be meteorologically plausible. 

However, many of the direct consumers of JTWC products are themselves 
meteorologists, supporting Navy ships and installations. Their confidence in the product 
could be reduced by forecasts that don’t make meteorological sense. JTWC forecasters 
produce forecasts that, within the margin of uncertainty with respect to the best 
meteorological evidence and interpretation, will not tend to undermine user confidence in 
the product or cause unnecessary consequences to the customer. For example, the JTWC 
track tends to be smoother than CONW, and is therefore more representative of actual TC 
paths. 

The above enhance user acceptability, in part by encouraging customer 
confidence in the forecast and forecasters. Another factor that can affect user confidence 
is large changes between forecast updates. In addition, large changes in the JTWC 
forecast from warning to warning cause concern and in many cases unnecessary cost 
among the customers. Therefore, the JTWC will tend to persist with existing forecast 
until meteorological evidence drives a change. 

CONW exploits the best available scientific knowledge from many models, some 
of which are explicitly tuned to provide highly accurate TC predictions, while being free 
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of any considerations related to user acceptability. Therefore, it is hard to beat CONW in 
terms of long-run accuracy, and deviations from CONW will tend to degrade the 
forecast’s error statistics. 

Since JTWC is subject to considerations other than accuracy, it is appropriate to 
develop measures of user acceptability to capture the value the JTWC adds with respect 
to these other considerations. Performance metrics could be designed to quantify the 
user-acceptability of the OFCL forecast. For example, 

• jerkiness (nonsmoothness) of a given forecast track; 
• jumpiness of a track from update to update; and 
• frequency of changes to TCCOR settings that would be induced by use of 

the forecast. 

The last could be measured by comparing an automated TCCOR-setting rule. For 
example, set TCCOR 4 (3,2,1) if the forecast track with 50-knot (kt) wind radii would 
indicate 50-kt winds at a given base within the next 72 (48,24,12) hours. If the following 
forecast update changes so that the condition is no longer satisfied, that would be counted 
as a reversal of the TCCOR setting. If the next level is set before the given level is 
reversed, then this counts as a reversal of a TCCOR. For TCCOR 1, if the storm 
dissipated without the base actually experiencing 50-kt winds, that would count as a 
reversal. These results could be summarized as in Table 1. 

Table 1: Frequency of TCCOR reversals 

TCCOR Level CONW (+DRCL radii) JTWC 
4 

Count these occurrences within a given period for comparison. 3 
2 
1 

The same data could be used to conduct a signal-detection theory study. Brooks 
(2004) is an example of signal-detection theory applied to meteorological forecasts; in 
that case, for tornados. 
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III. CONTRIBUTION OF HUMAN-IN-THE-LOOP (HITL) 

To measure the value provided by the HITL fairly, a forecasting system that 
includes human intervention should be compared with a system that is fully automated. 
Current comparisons of error statistics for CONW versus the JTWC official track do not 
accurately measure the value of all contributions of human intervention in the TC 
forecasting process. 

The human contributes to the CONW during (at least) two stages in each forecast 
cycle. The human TDO produces a bogus that the numerical models take as an input. The 
JTWC’s position, produced by the TDO with input from the human satellite analyst, is an 
input to the track interpolation scheme: the tracks generated by the various models are 
translated so that their current position coincides with the analysis. Some numerical 
models even use recent JTWC best tracks as inputs. The intensity analysis is also an input 
to statistical intensity prediction models, including STIPS. 

In order to properly measure the value added by the HITL, the official forecast 
should be compared with a forecast generated by a system that has no human 
contribution. To estimate this value, you would need to be able to run the models with an 
automated bogus, and automate the translation of the tracks to the analysis position. 

A nearly-automated consensus track (which would still benefit from any human 
value-added in, producing the bogus) could be either 

• an average of noninterpolated models, or 
• an average interpolated to an automated best track. 

While we would expect the second type of consensus to be more accurate, it is 
worth comparing both of the above with the JTWC forecast, to at least allow for the 
possibility that interpolating to an automated best-track degrades forecast accuracy. Thus, 
more fair measures of the effect of human intervention on track and forecast accuracy 
statistics would be: 

• Track: mean absolute 48-hour position error for automated consensus 
(type 1 or 2 above) – mean absolute 48-hour JTWC position error. 

• Intensity: mean absolute 48-hour STIPS intensity error – mean absolute 
48-hour JTWC intensity error. 

In recent years (with the exception of 2010 and long-lead forecasts), the CONW 
track forecast has had lower seasonal average FTE than the OFCL forecast, and STIPS 
intensity predictions have had lower seasonal average error than the OFCL forecast. 
These are the most commonly cited measures of forecast performance. 

Averaged over an entire season, the accuracy statistics (mean absolute track and 
intensity error) for the consensus are somewhat better than for the JTWC track (except at 
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long leads). However, it may be that even based on these accuracy statistics, JTWC 
outperforms the consensus systematically under certain circumstances. For example, 
research has shown that in other environments, human experts can add value relative to 
models in situations of high uncertainty. Therefore, a near-term research question is 
whether the JTWC’s accuracy statistics outperform consensus in certain identifiable 
situations, such as high uncertainty, or situations reflecting particular patterns of 
disagreement among the numerical models. 

For some storms, such as 15W in 2010, the forecaster may have knowledge 
indicating that certain model tracks are likely to be in error. With respect to intensity, the 
forecasters are aware that the statistical models, like STIPS, perform well over many 
storms, but underforecast intensity when there are signs of rapid intensification, as 
occurred for 15W. In these situations, the human can add value, even as measured by 
accuracy statistics, by deviating from the automated guidance. The trick is identifying 
these situations in advance. 

A first step is to explore the historical record, and categorize storms according to 
potential indicators, such as model spread (although prior research has not shown that 
spread alone does not necessarily indicate an opportunity for the human to intervene). For 
example, do bifurcated model tracks versus a “squashed spider” indicate a situation in 
which the TDO should deviate from CONW? More sophisticated indicators, which 
perhaps can distinguish a bifurcation situation in which two alternative scenarios are 
reflected in the models, might be better at distinguishing the situations in which humans 
can improve the forecast. In a bifurcation situation, if the forecaster has access to recent 
data or knowledge that is not incorporated into the models, he may be able to eliminate 
those that are not predictive and thereby improve on CONW. 

Given the JTWC’s experience with the systematic approach forecast aid (SAFA), 
which automatically flagged certain model behaviors that would be susceptible to change 
as models changed, the search for patterns of high-HITL value would have to use 
indicators that are predictors over a long record of storms, covering model changes. In 
identifying circumstances in which the human adds value, it would also be important to 
separate out the two or more elements of human contributions, i.e., the satellite analysis 
and the rest of the forecast. 



 13 

IV. SPECIAL CHALLENGES FOR INTENSITY 

AK’s report focused on the track forecast. Most of his observations and 
recommendations apply equally to the intensity forecasting problem. For example, the 
impediments to collecting and synthesizing the relevant guidance are at least as great for 
intensity as for track. Moreover, track and intensity (structure) are both features of a 
single complex system, compounding the difficulty of the forecasting task environment. 
Additional challenges not discussed elsewhere that may pose a special challenge for 
intensity prediction include: 

• Feedback is noisy. By definition of intensity, the ground truth—maximum 
sustained surface wind speed—is rarely, if ever, observed. From the 
National Oceanic and Atmospheric Administration (NOAA) Science 
Advisory Board (SAB) majority report from the Hurricane Intensity 
Research Working Group (2006, p. 10): 

The National Hurricane Center definition of ‘intensity’ is 
the maximum 1-minute-sustained 10-m-height winds in the 
core of the storm. It provides an easily grasped measure of 
storm strength. However, this quantity is rarely, if ever, 
directly measured, and is normally inferred by 
extrapolation from ground or aircraft observations, by 
satellite pattern-recognition techniques, or by pressure-
deficit/maximum-wind relationships. 

By definition, forecasters are aiming at a hazy target, and because the 
verification is usually subjective, an additional layer of error (bias, 
unreliability, and imperfect aid exploitation) is introduced. A further layer 
of imprecision is introduced by measurement error, especially as the types 
of measures that may be available to inform the best track analysis of 
intensity varies from forecast to forecast. In addition, the best track is 
rounded to 5kts, further adding noise to the best track intensity. 

• Environmental unpredictability (low match between true descriptors and 
the actual event) reduces forecast accuracy directly, but also tends to 
reduce the forecasters” reliability (Stewart, 2001), to the further detriment 
of the forecast. Intensity is highly unpredictable; therefore, it is an 
especially difficult forecasting challenge. 

• Feedback is delayed and not visually presented in ATCF. Accurate 
feedback on track is more immediate and more salient than on intensity, 
because the analysis center available within about eight hours is very close 
to the eventual (postseason) best track, and is represented graphically in 
ATCF, and may be displayed simultaneously with the recent forecast so 
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that differences are apparent and may be viewed in context of the guidance 
used to produce the forecast. 

• Many of the intensity guidance products (both automated and human-
mediated) rely on the same underlying images, and therefore have high 
correlation. Human forecasters tend to attribute too much of the predictive value 
to multiple correlated cues that actually reflect the same information. 

• Many of the guidance products are themselves human-mediated, and 
therefore subject to imprecision introduced by human factors. 

These issues raise some important questions that could be addressed with a  
lens-model analysis, such as: 

• Do the above-described challenges limit intensity forecast accuracy, and if 
so, by how much? 

• How much could perfect guidance (valid forecast aids that, when 
combined objectively, explain 100% of the variability in verified intensity) 
improve forecast accuracy in the current TC forecasting environment? 

• Does subjective verification limit the maximum potential accuracy of 
intensity forecasts, and if so, by how much? Could accuracy be improved 
by using objective verification? 
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Executive Summary 
 
The scope of this project was to evaluate the task and technological support environments at the 
Joint Typhoon Warning Center (JTWC) watch floor and provide recommendations with the 
ultimate goal to improve forecast accuracy. 

Based on a review of available documents, information gathered at the JTWC through 
observations, interviews, discussions, surveys of information technology and interfaces on the 
watch floor, a variety of mathematical analyses and related research findings presented in this 
report, the best available theory of human judgment (forecasting) under uncertainty and optimal 
belief updating, and best practices in human factors, the following conclusions and 
recommendations are provided: 
 
1. JTWC staff face severe cognitive challenges associated with attempting to maintain situation 
awareness of atmospheric state and dynamics from numerous information displays with disparate 
formats, geo-referencing, measurement scales, symbology, data age, source pedigree, and 
trustworthiness. Every effort should be made to provide updated technology in an integrated suite 
of information displays with maximum design consistency. 

2. JTWC staff benefit strongly by numerical model guidance, but the cognitive processes 
whereby they integrate the information provided by guidance and information from their own 
cognitive model of atmospheric state and dynamics is currently covert and fully intuitive. Data 
collection, analysis, and Bayesian techniques for modeling and supporting belief updating, and 
the optimal combination of information from model guidance and TDO awareness of atmospheric 
evolution and state should be pursued to provide analytical support for performing this 
challenging task. 

3. Although statements are frequently heard about the relative performance of JTWC and CONW 
guidance, it is important to note that no fully automated (no human-in-the-loop) TC forecasting 
system exists at the JTWC. As such, there is no sound empirical basis for such statements, at least 
with the current state of technology at the JTWC. 

4. Until the time that a fully or near-fully automated TC forecasting system exists at JTWC, it 
will prove impossible to determine and quantify the true value contributed by JTWC staff 
training, knowledge, expertise, and operating procedures to TC forecasting accuracy. 

5. The manner in which TC forecasting performance is quantitatively measured, together with 
human factors research findings in related domains, suggests that forecasting inconsistency, 
rather than systematic or knowledge-based bias, is likely to be the most significant contributor to 
the JTWC TC mean track error metric. 

6. The manner in which TC forecasting performance is quantitatively measured and 
communicated (as a scalar value) may provide barriers to learning from experience for TDOs 
who conceive of TC forecasts in terms of 2 degrees of freedom: speed and direction. A 
decomposition of overall mean track error into its separable components related to TC speed and 
directional errors would provide additional support for learning from experience and 
performance-based feedback. 

7. Dedicated efforts by JTWC staff to consistently strive for continuous improvement in addition 
to performing the mission at hand are truly remarkable in the author’s experience.
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1. Introduction 

 
1.1 Background 
Navy assets as well as human lives around the Pacific depend on forecasts that the Joint 
Typhoon Warning Center (JTWC) produces for about 85 tropical cyclones per season 
with a staff of only nineteen. Making the best use of those limited human resources is 
essential, and human performance – and therefore forecast accuracy – may currently be 
limited by sub-optimal design of the task/work environment.  
 
1.2 Scope 
The goal of this project was to evaluate the task and support environments associated 
with the Joint Typhoon Warning Center (JTWC) watch floor and provide 
recommendations with the ultimate goal to improve forecast accuracy. 
 
1.3 Description of Tasks Performed 
The contractor has performed the following tasks: 
 

1. Reviewed background documents on the JTWC’s mission, responsibilities, and 
processes in preparation for the site visit. (24 hours) 

 
2. Visited the JTWC during the West Pacific typhoon season in November 2010, to 

observe the current operations of the JTWC watch floor for a period that 
depended on the amount of tropical-cyclone activity, but included at least one 
active tropical cyclone. Six (6) watches were observed in part or whole. (20 
hours) 

 
3. Gathered empirical observations of the forecasting routine, available guidance, 

display products, in-house support efforts provided by JTWC day- working staff, 
and had discussions with JTWC staff regarding the above as well as the JTWC’s 
feedback and verification processes.  Attended In-Brief by CAPT Angove and 
prepared and presented Out-Brief to CAPT Angove and LCDR Callahan while on 
site. (15 hours) 

 
4. Compared observations with the state-of-the art in human factors engineering, and 

made recommendations for potential improvements and additional efforts to 
improve the forecasters’ task environment, to include: information systems, 
computer models, technological interfaces, and printed text and graphical 
documents. (16 hours) 

 
5. Analyzed the results of the observational phase and formed hypotheses regarding 

characteristics of the task environment that may limit forecast accuracy. (15 
hours) 

 
6. Formulated recommendations based on the state-of-the-art in human factors 

engineering from the literature and best practices, and based on empirical 
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observations. Recommendations include both short-term modifications that could 
be implemented within JTWC to improve the task environment as well as larger-
scale projects that would have potential to yield larger improvements in forecast 
accuracy.  Documented recommendations in a final report delivered to NPS 
November 16, 2012. (30 hours) 

 
1.4 Level of Effort 
Total hours worked: 120 
 
 
2.  JTWC Forecasting Operations 
 
The following sections provide a brief overview of the resources available at the JTWC 
and the practices used in an attempt to achieve consistently high levels of TC forecasting 
performance and end-user satisfaction in this challenging work environment. 
 
2.1 Staffing 
 
Nominal JTWC Watch Floor staffing includes 1 TDO (Typhoon Duty Officer), 1 SAT 
(Satellite Analyst), and 1 TDA (Typhoon Duty Assistant).  A second TDO is added for a 
third, etc., simultaneous storm. 
 
2.2 TDO Warning Cycle Basic Activities 
 
Two cycles of the following nominal activities are performed per 12-hr watch: 
 
1.  SAT provides updated fix & intensity estimates via DVORAK 
2.  TDO sets best track position and intensity based on JTWC and other  
      agency satellite fix positions, satellite imagery, and other observations. 
3.  Prepare and send BOGUS (input for forecasting models) 
4.  Create consensus using ATCFS 
5.  Assess appropriateness of the various models given the larger wx context,  
      known strengths/weaknesses/tendencies of individual models, additional  
      information, etc. 
6.   Prepare and issue track and intensity warnings 
7.   Prepare and issue prognostic reasoning summary 
8.   Handle customer calls, satisfy other requests 
9. Be on the lookout for developing storms and create invests 

 
 

Warning cycle activities can become time-stressed in multi-storm situations, as depicted 
below in Figure 2-1. 
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Figure 2-1. 2010 Storm timeline showing significant forecasting overlap intervals. 
 

 
2.3 Information Load 
 
During each forecast cycle, the TDO consults, at a minimum, the following information 
sourses beyond the information available through the ATCF suite: 
 
•WxMap 
 
•NRL TC or FNMOC TC Webpage 
 
•CIMMS TC Page 
 
•Streamlines (Large hardcopy printouts) 
 
•Water Vapor Displays 
 
•CIRA RAMBB 
 
•ASCAT 
 
•JAAWIN U. Wyoming (or other) Collected Observations 
 
•Email (e.g., SATCON Automated DVORAK) 
 
•Microwave Scatterometer 
 
•Agency Analysis Charts 
 
Beyond the simple number of information sources that must be considered, significant 
barriers to effective information integration across these sources exist. These include the 
lack of consistent geospatial referencing and scaling, information age (timeliness), source 
pedigree, data age, reliability or trustworthiness, and so forth. In response to at least some 
of these concerns, JTWC staff members were observed to have created a prototype 
information system that would assist them in their information integration tasks. This 
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system, depicted in Figure 2-2, uses Google Earth as a platform on which multiple 
geospatial layers of displayed information could be presented, toggled on and off, varied 
for transparency, and so forth. 
 

 
 

Figure 2-2. JTWC’s Google Earth-based TC forecast information integration aid. 
 
The Google Earth prototype spontaneously created by JTWC staff sends a strong signal 
that these staff are overwhelmed by the current cognitive demands they face in 
attempting to internally (cognitively) integrate the vast array of spatially-oriented 
information they must consult to continually update their cognitive model of atmospheric 
evolution. In human factors terms, the Google Earth prototype represents an attempt to 
create what is known as an integral (rather than separable) display, in which the 
integration of information occurs within the display itself, allowing the powerful 
processes of visual perception to process the integrated information directly, instead of 
relying on the much more fragile and error-prone cognitive processes such as working 
memory and visual imagery to integrate this information mentally. A standard human 
factors textbook, such as Wickens, Lee, Liu Becker (2005, see especially chapter 8 on 
displays) provides ample evidence of the benefits of integral displays to human cognition 
and performance. 
 
Observations, interviews, and the spontaneous creation of information integration tools 
such as the Google Earth prototype make it is clear that TDOs continually attempt to 
update their cognitive model of atmospheric evolution during a watch since the time of 
the immediately previous model BOGUS initialization. TDOs then use this updated 
understanding of the atmosphere to influence how they consider and reflect upon 
subsequent model guidance when it is ultimately received. The following section 
provides a brief introduction to the role played by model guidance in JTWC TC 
forecasting operations.  
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2.4 Model Guidance 
 
The increasingly important role played by numerical-computational models in TC 
forecasting is well known and documented elsewhere. In recent years, for example, there 
is a belief that the model consensus known as CONW has approached the performance of 
JTWC and perhaps even surpassed it over the last few years. Here, the focus is on how 
the guidance provided by guidance is actually used in the creation of a TC forecast. 
 
Based on observations, interviews, and documents provided by JTWC, the process 
whereby a TDO and model guidance interact to produce a TC forecast is as follows: 
 
1. Provide bogus to models sent at synoptic times (00, 06, 12, 18 UTC) plus one hour (01, 
07, 13, 19 UTC). Bogus data consists of position, intensity (maximum sustained wind 
speed and minimum sea level pressure), radius of maximum winds, radius of 34 / 50 / 64 
kt winds, depth (shallow, medium, or deep), eye diameter (zero if no eye), radius of the 
outermost closed isobar, pressure of the outermost closed isobar, and 12 to 24 hour past 
motion (direction and speed movement vectors described 
previously). 
 
2. The six-hourly models begin their runs at synoptic times (12-hourly models begin at 00 
and 12 UTC). During the first hour to hour and a half after synoptic time, the 
model analysis is constructed from observations (ship, buoy, vertical weather balloon 
soundings, satellite data, etc.) including JTWC Bogus data (for those models that use this 
data). 
 
3. The ATCF receives and automatically plots the returned model guidance, for each 
individual model as well as their overall average track, called CONW. CONW consists of 
forecast TC positions for T0 + 12, 24, 36, 48, 72, 96, and 120 hours. Due to the delay 
between model initialization and when their returned guidance is received, an 
interpolation process is used to update guidance provided by the models, including 
CONW, into a current forecast, i.e., one consistent with TC evolution since the time of 
intialization. 
 
4. According to Goerss, Sampson and Gross (2004), this interpolation process operates as 
follows: 
 
Since forecast track output for the NWP models become available to the  
forecaster 6 or 12 h after NWP model run time, they arrive too late to be used directly. 
Instead, the NWP model tracks are interpolated to intermediate times, and then 
interpolated positions are relocated to reflect the forecaster-analyzed (best track) 
position. The version of the interpolator used in this study includes a cubic spline (M. 
DeMaria 2000, personal communication) and a 10-pass, 3-point filter. All interpolated 
tracks are computed from real-time tracks, not postseason analyzed tracks (best tracks). 
Quality control for the interpolator includes a linear interpolator to fill in missing 12- 
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and 36-h forecasts, a forecast position check (the 6-h/12-h old NWP model 6-h/12-h 
interpolated forecast position must be within 333 km of the current forecaster analyzed 
position), and a forecast track speed check (60-kt maximum) for all forecast periods 
beyond 12 h. NWP model interpolated tracks that fail the 12-h forecast position check 
are eliminated from the interpolator, while those failing the 60-kt speed check are 
truncated before the 60-kt speed is encountered.  
 
A consensus for a given forecast period is a simple average of the interpolated  
members that pass the interpolator quality control tests described above. An  
attempt is made to compute a consensus forecast at the 12-, 24-, 36-, 48-, 72-, 96- 
and 120-h forecast periods. This consensus is computed if two or more members  
exist for a given forecast period. If less than two members exist, the consensus is  
not computed. (p. 634). 
 
5. If the TDO has no reason to adjust or over-ride the guidance provided by CONW, he 
or she is not able (within the ATCF as currently designed) to directly issue a forecast 
corresponding to CONW. Instead, it was observed that a non-trivial amount of keypress 
and mouse work was necessary to create a JTWC forecast corresponding to CONW even 
if the attempt was to mimic the guidance provided by CONW to the letter. It is 
understood that the interface could be readily updated to allow the JTWC forecast 
equivalent to the CONW guidance. This is recommended, not because it is believed that 
this will always result in a superior forecast, but instead to eliminate unwanted, human-
induced variability and inconsistency when the TDO has no desire to significantly depart 
from CONW guidance. 
 
6. However, the TDO may in fact have good reasons to over-ride the CONW forecast, 
given the validity of CONW position and intensity guidance in light of his or her 
understanding of the current state of the atmosphere. For example, consider the forecast 
situation depicted in Figure 2-3 below. 
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Figure 2-3. A case in which guidance provided by all but one model (GFNI, to the north) 
is largely consistent. A TDO commented that the GFNI model was known to diverge 
northward in this manner due to facts of the particular meteorological situation at hand. 
 
In the situation depicted in Figure 2-3, the TDO observed that GFNI model was likely to 
be adding error to the CONW forecast track by drawing it more northward than it should 
have been (as indicated by the convergence of the rest of the model guidance to the 
south). In this case, the TDO performed a visual-manual adjustment of the (red) JTWC 
forecast track a bit to the south of CONW guidance (black), in order to compensate for 
the erroneous GFNI model guidance.  
 
The type of joint, human-model forecasting behavior described above is consistent with 
prior research on a technique called the Systematic Approach Forecast Aid (SAFA) used 
at the JTWC to allow a forecaster to form a selective consensus of model guidance, or 
SCON (Sampson, Knaff, and Fukada, 2006; also see Carr, Elsberry & Peak, 2001). 
Experience with SAFA was mixed. For example (from the above): 
 
The Systematic Approach Forecast Aid (SAFA) has been in use at the Joint Typhoon 
Warning Center since the 2000 western North Pacific season. SAFA is a system designed 
for determination of erroneous 72-h track forecasts through identification of predefined 
error mechanisms associated with numerical weather prediction models. A metric for the 
process is a selective consensus in which model guidance suspected to have 72-h error 
greater than 300 n mi (1 n mi _ 1.85 km) is first eliminated prior to calculating the 
average of the remaining model tracks. The resultant selective consensus should then 
provide improved forecasts over the nonselective consensus. In the 5 yr since its 
introduction into JTWC operations, forecasters have been unable to produce a selective 
consensus that provides consistent improved guidance over the nonselective consensus. 
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Also, the rate at which forecasters exercised the selective consensus option dropped from 
approximately 45% of all forecasts in 2000 to 3% in 2004. 
 
However, Sampson, Knaff and Fukada (2006) also noted: 
 
To evaluate whether or not the SCON performance in 2001–04 was degraded by relaxing 
the requirement that the consensus spread be larger than the 250 n mi specified in Carr 
et al. (2001), statistical analysis for cases in which the consensus spread was larger than 
250 n mi are analyzed. For the 30 cases that verified (1.5% of the total number of 
verifying SCON forecasts), SCON outperformed NCON by about 30%. The results are 
significant at the 95% level. It is worth noting that the other skillful NWP models and 
consensus aids available to JTWC forecasters may have influenced the forecasters while 
performing the SAFA analysis. 
 
It is important to appreciate, however, that these types of forecasting performance 
comparisons are made somewhat problematic by the fact that the human forecaster 
clearly adds value to CONW in at least 2 stages of the forecasting cycle: 1) by 
establishing the BOGUS or some of the initial conditions used by the models; and 2) in 
the process of using the ATCF to translate the guidance provided by CONW into a timely 
and feasible forecast. The fact that no completely automated system exists for forecast 
generation (without a TDO “in the loop”) currently renders it impossible to determine 
whether the TDO’s activities are adding or subtracting value from what would be 
achieved by a fully automated forecasting system, that is, one based on CONW integrated 
with any automatic processing of any other relevant atmospheric information. 
 
2.5 Overall Schematic Model of TC Forecasting Process 
 
The preceding discussion leads to an overall conceptualization or schematic (incomplete) 
model of the time course of the JTWC TC forecasting process as depicted in Figure 2-4. 
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Figure 2-4.  A schematic model of the JTWC TC forecasting process. 
 
The model depicted in Figure 2-4 traces the flow of information, cognition, and 
numerical computation through one forecast cycle from initial model BOGUS-ing to the 
creation of an updated TC forecast. As depicted in the upper portions of the model, the 
TDO attempts to maintain “situation awareness” (Kirlik & Strauss, 2006; Strauss & 
Kirlik, 2006) of those atmospheric dynamics that may affect TC track and intensity over 
the period of time that numerical models are being run to provide guidance prior to 
creating and issuing the subsequent TC forecast. The TDO relies on his or her knowledge 
and expertise in conjunction with real-time information sources identified in section 2.3 
above to create a cognitive model of these dynamics. As shown in the large rectangle at 
the right side of the figure, the ultimate forecast is prepared by the TDO through a 
process of reflecting on model guidance, such as CONW, in light of this cognitive model 
of the recent and current atmospheric dynamics and state. On the basis of this process, the 
TDO may elect to issue a forecast largely aligned with CONW, or may, as discussed 
previously, decide to adjust the CONW forecast based on atmospheric developments 
since the time the numerical models were initially BOGUSED, and possibly also 
information about the tendencies of each of the various models providing guidance.  
 
In terms used in the study of human judgment and decision making, the task faced by the 
TDO in combining these two sources of information (the information flowing upward 
from model guidance, and the information flowing downward from the TDO’s cognitive 
model of the atmosphere in Figure 2-4) is termed Bayesian updating or Bayesian belief 
revision (Edwards, 1962). While obviously much more complex, this task is not unlike 
cognitive tasks people perform every day in which somewhat outdated information (in 
the current case, model guidance based on initial conditions known to no longer currently 
hold) is combined with newly available information (in the current case, updated 
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information about atmospheric evolution since initial model BOGUS-ing) to yield a new 
belief (in the current case, a TC forecast) that benefits from both sources.  
 
In an everyday context, for example, one might consult today’s morning newspaper at 
lunchtime for weather information to help inform one’s decision about whether or not to 
plan a golf outing later in the afternoon. This forecast has some validity, even though one 
knows it to be somewhat outdated (e.g., it was produced prior to the production run of the 
newspaper late the previous evening). Then, one might turn one’s attention out the 
window to scan the skies for signs of rain. This information is certainly more current than 
the newspaper forecast, but it is far from perfect, and it does not benefit by 
meteorological information that went into the professional forecast available in the 
newspaper. What do we know about people’s ability to intuitively combine multiple 
sources of information in an optimal fashion? The following section provides a brief 
overview of the central findings, with possible implications for JTWC operating 
procedures or future technological aids. 
 
2.6 Bayesian Analysis of Forecast Belief Updating  
 
There is considerable experimental evidence that people do not update their beliefs 
optimally (i.e. consistently with Bayes’ theorem). This effect was famously documented 
in experiments outside the subjects’ domain expertise by Kahneman and Tversky (1972).  
This effect has also been documented in experiments within subjects’ domain expertise, 
e.g. in medical professionals interpreting test results (Casscells, Schoenberger, and 
Graboys, 1978). For a detailed explanation of Bayes’ theorem in the context of cognitive 
engineering, see McCarley and Benjamin (in press). 
   
Recently, however, there have been some successful attempts to design information 
displays to improve people’s ability to reason effectively in Bayesian belief updating. For 
example, Tsai, Kirlik & Miller (2011) created display aids that were found to 
significantly improve Bayesian reasoning in the context of intelligence analysis, and 
Miller, Kirlik, Kosorukoff & Tsai (2008) created display aids that significantly improved 
the Bayesian reasoning of fantasy sports experts making predictions about professional 
athletes annual performance in Major League Baseball and National Football league 
seasons.  
 
While those display aids are not immediately applicable to the JTWC context, prospects 
for extending these approaches to TC forecasting do exist, especially in the realm of TC 
intensity forecasting. To do so, historical data would have to be collected (or analyzed, if 
already available) to determine the base-rate reliability of guidance such as CONW 
regarding its ability to successfully predict TC strengthening and weakening. 
Additionally, similar data would have to be collected on TDO’s unaided (i.e., prior to 
viewing model guidance) abilities to successfully forecast TC strengthening and 
weakening events. With such data in hand, and to return to the previous example on 
scheduling a golf outing, one would then be in a position to determine how to relatively 
weight and thus combine the precipitation prediction available from the morning 
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newspaper and one’s intuitive precipitation prediction based on viewing the weather out 
the window. Similarly, at the JTWC, Bayes theorem could be implemented in computer 
software as an aid to help a TDO determine how to optimally combine his or her own 
intuitive prediction of TC strengthening and weakening events, and the guidance obtained 
about TC strengthening and weakening received from numerical models. Currently, TDO 
expertise and CONW guidance are combined in an entirely intuitive fashion, without the 
benefit of analytical support, such as Bayes Theorem, for this challenging and often 
counter-intuitive task. 
 
 
3. Analysis of Tropical Cyclone (TC) Forecasting Performance Evaluation 
 
3.1 Why this Analysis is Important 
 
All attempts to improve the performance of a system, whether it be solely human, solely 
technological, or, as at the JTWC, comprised of both human and technological 
components, should be based in a detailed understanding of how the performance of that 
system is ultimately assessed. By contract, the purpose of this report is to make 
recommendations to improve the performance of the JTWC as an integrated human-
technology forecasting system. According to Annual Tropical Cyclone reports prepared 
by the U.S. Naval Maritime Forecast Center/JTWC, one central component of JTWC 
performance assessment consists of an annual forecast verification summary. 
 
To conduct this summary, verification of TC warning positions and intensities at 24, 48, 
and 72-hour forecast lead times are compared against the final best track for each JTWC 
forecast. Forecast error statistics at both the JTWC and National Hurricane Center (NHC) 
are computed on the basis of the absolute great circle distance between a forecast position 
and the corresponding post-analysis best track position. Figure 3-1, after JTWC Annual 
Tropical Cyclone reports and Tsui and Miller (1988), illustrates nature of the track error 
calculation for any particular forecast location. 
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Figure 3-1. Calculation of track position error (FTE) for a single TC forecast. 
Annually, these track position errors are summarized in terms of a mean forecast 
track error. Figure 3-2 depicts gains made over the past years in reducing mean TC track 
forecast error for the Western North Pacific over the last decades. 
 

 
 

Figure 3-2. JTWC Mean TC forecast track error between 1974 and 2009 (inclusive). 
 
Note that the mean JTWC 48-hr forecast track error is now close to the value of the mean 
24-hr track error of about a decade ago. These gains are in the same ballpark as those 
seen in NHC TC forecast track performance in recent years, as depicted in Figure 3-3. 
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Figure 3-3. NHC Mean TC forecast track error between 1990 and 2009 (inclusive). 
 

Close inspection of these (and related) graphs and statistics indicates that NHC mean 
track forecast errors may be slightly lower than for JTWC in recent years, especially at 
the 24- and 48-hour lead times. If so, a great many factors may possibly contribute to 
these differences. Here, the focus is solely on improving JTWC forecast performance 
based on information collected on-site and a consideration of available theory and best 
practices in human factors and related areas. No similar on-site visit to NHC was made to 
inform the conclusions and recommendations of this report. 
 
To this point it seems fairly clear that mean error (typically expressed in nautical miles) 
plays a central role in the assessment of overall JTWC performance, at least as far as 
track forecasts are concerned. Intensity forecasts are a more complicated and subtle issue, 
and as such not a separate focus of the current discussion. However, the ultimate 
recommendations of this report are intended to serve the general goal of improving 
JTWC overall TC forecast performance for both track and intensity to the levels that 
current science and technology allow. 
 
3.2 Minimizing Mean Error: Intuition and Reality 
 
A common and partially correct view of mean error (an average of track error distances 
over a year or forecasting season) is that there are two components involved: accuracy 
and precision. Depending on the context, other terms used to describe precision are 
‘consistency’ and ‘repeatability.’ These terms (precision, consistency, and repeatability) 
will be used interchangeably for the purpose of this report. Figure 3-4 provides a 
graphical depiction of the distinction between accuracy and precision as they exist 
individually, and how they would collectively combine to produce an overall (scalar) 
value of mean error. 
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Figure 3-4. Decomposition of mean (overall) error into separable components of 
inaccuracy and imprecision. Minimizing mean error (maximizing forecasting 
performance) requires the highest possible levels of both precision and accuracy. 
However, when considering Figure 3-4, it is extremely important to note that it leads to 
false intuitions about the relations between accuracy and precision (or inaccuracy and 
imprecision) as they combine to determine overall mean error in the TC forecasting 
context. More specifically, if mean error (of a set of point forecasts, such as the X’s in the 
figure) is the ultimate measure of forecast performance evaluation, then Figure 3-4 leads 
to the false intuition that a forecaster can be imprecise yet can still be accurate (the 
lower left quadrant in Figure 3-4).  
 
However, this is simply not the case, and this fact is likely to create an under-appreciation 
of just how much even relatively minor levels of imprecision or inconsistency in JTWC 
track forecasts inflate mean track error beyond what would intuitively seem to be the 
case. 
 
Why? Note that our intuitive estimation that a set of forecasts or point locations 
distributed in a pattern like the lower-left quadrant of Figure 3-4 are imprecise yet 
accurate rests on our intuition that the X’s are randomly scattered around the center of the 
target, and thus the errors “cancel out” in a way that they do not in the lower-right 
quadrant. It is this “cancelling out” intuition that gives rise to the fundamental idea 
underlying Figure 3-4 as a whole: that one can demonstrate some inconsistency or 
inaccuracy yet one can remain, on the whole, largely accurate. While this may hold true 
of how accuracy is defined in the figure (the central tendency of the distribution should 
fall in the yellow or target region), it is not at all true of how the mean error of these 
points would be defined an measured, assuming that they were a distribution of TC 
forecast locations. 
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Specifically, recall that a mean (or average value) of a set of numbers is that number that 
minimizes the sum of the squared errors (or squared and therefore the positive 
deviations) from that number.  
 
As such, the error-squared technique results in making all errors contribute positively to 
the error summing calculation, ruling out any “cancelling out” of positive and negative 
errors as would be suggested by the lower-left quadrant of Figure 3-4. Thus, the mean 
error calculation as it is actually implemented violates intuitions that a forecaster can 
suffer some loss of precision or consistency, yet maintain reasonable accuracy, at the 
labels in the figure suggest. That is, however intuitive Figure 3-4 may be, the error-
squared aggregation method used to evaluate JTWC forecast performance does not favor 
error patterns that are centered around the best forecast track in the way that Figure 3-4 
favors error patterns than are centered around the yellow center of the target (as opposed 
to those centered elsewhere, as in the bottom-right quadrant of the Figure).   
 
To this point, we have shown that the manner in which JTWC forecasts are assessed: 
 
          A) is inconsistent with the intuition that high levels of performance remain 
   achievable by a forecast system that suffers from some level of imprecision 
   as long as the track errors associated with this impression or inconsistency 
   are unbiased (i.e., tend to “cancel out” or center on) the best track location. 
   Instead, as shown in Figure 1, FTE for every forecast location has only 
   non-negative values and thus various errors, such as to the north and south, 
   and to the east and west, do not cancel but sum. Said in other terms, the lay 
   or intuitive understanding of how errors of accuracy and precision combine 
   to yield a scalar value of overall errors does not apply to JTWC performance 
   assessment. 
 
Finally, it is useful to point out a second mismatch between the manner in which JTWC 
forecast performance is assessed and the manner in which TDOs both conceive of, and 
communicate with one another, about TC forecasts. Consider the following text that has 
been excerpted from an official JTWC forecast, in this case, TS/TC/Typhoon 15W 
(Megi) in October, 2010, including bold highlighting added by this author: 
 
FORECASTS: 
     12 HRS, VALID AT: 
     170000Z --- 19.0N 127.7E 
    MAX SUSTAINED WINDS - 115 KT, GUSTS 140 KT 
     WIND RADII VALID OVER OPEN WATER ONLY 
 
VECTOR TO 24 HR POSIT: 265 DEG/ 11 KTS 
      --- 
     24 HRS, VALID AT: 
     171200Z --- 18.8N 125.4E 
     MAX SUSTAINED WINDS - 125 KT, GUSTS 150 KT 
     WIND RADII VALID OVER OPEN WATER ONLY 
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VECTOR TO 36 HR POSIT: 255 DEG/ 11 KTS 
      --- 
     36 HRS, VALID AT: 
     180000Z --- 18.3N 123.2E 
     MAX SUSTAINED WINDS - 135 KT, GUSTS 165 KT 
     WIND RADII VALID OVER OPEN WATER ONLY 
VECTOR TO 48 HR POSIT: 255 DEG/ 10 KTS 
     --- 
     EXTENDED OUTLOOK: 
     48 HRS, VALID AT: 
     181200Z --- 17.8N 121.1E 
     MAX SUSTAINED WINDS - 090 KT, GUSTS 110 KT 
     WIND RADII VALID OVER OPEN WATER ONLY 
   VECTOR TO 72 HR POSIT: 270 DEG/ 08 KTS 
     --- 
     72 HRS, VALID AT: 
     191200Z --- 17.7N 117.7E 
     MAX SUSTAINED WINDS - 100 KT, GUSTS 125 KT 
     WIND RADII VALID OVER OPEN WATER ONLY 
   VECTOR TO 96 HR POSIT: 280 DEG/ 06 KTS 
 
The highlighted elements of this forecast, fully consistent with observations of, and 
discussions with TDOs at JTWC, indicate that, by and large, forecasters think of TCs as 
dynamic storm systems moving with a particular speed and direction (DEG/KTS) at any 
point in time. That is, TDOs tend to think of TCs in polar (rather than Cartesian) 
coordinates, where motion is defined by a vector whose angle indicates direction of 
movement and whose length indicates speed of movement. This is only natural, as this is 
how the evolution of a TC is actually experienced. 
 
Consider, though, the difficulty of learning for a forecaster whose job it is to make 
predictions of TC speed and direction yet is ultimately assessed on mean track error. An 
analogy would be to a golfer who, after a session practicing putting, was provided 
feedback that his or her putts ended, on average, at a distance 2.4 meters from the hole. 
What the golfer needs is more diagnostic feedback: what does this 2.4 meter measure 
mean when it comes to what is actually being controlled: aim (or putting direction) and 
distance (or speed)? 
 
The TC forecaster, like a golf putter, lives and thinks in a world of speeds and directions, 
yet the TC forecaster, and the JTWC as a whole, is evaluated by a scalar metric of track 
error, measured in a Euclidean rather than Cartesian coordinate system. As such, it is 
useful to consider the mapping between errors in forecast TC speed and direction 
(individually) and overall mean track errors. Here, too, it may be that this mapping 
(which, in theory at least, needs to be understood for a forecaster to learn to adjust his or 
her speed and directional forecasts on the basis of overall track error) may not be fully 
intuitive. If not, it may pay to pursue the development of aiding or training technologies 
that provide TDOs with a better understanding of these relationships. Figure 3-5 provides 
a starting point for doing so. 
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Figure 3-5. A TC forecast situation depicted to enable a convenient transformation 
between polar and Cartesian coordinate systems. Current TC location is vertex A. 
Forecast TC location (in 24, 48, etc.) hours is vertex B, at a distance c, or in terms of TC 
movement at a speed of c units of distance per unit time. Best track (actual) TC location 
at this forecast lead-time is vertex C, at a distance b, or in terms of TC movement at a 
speed of b units per unit time. The angular or directional error of the forecast is given by 
a. The speed error of the forecast is (c – b) in absolute terms, or the ratio (|c – b | / b) in 
relative terms. The Forecast Track Error (cf. Figure 2-1) is given by the length of side a. 
 
Based on observations and discussions at JTWC, evidence indicates that TDOs 
decompose the task of achieving a low FTE into two components, typically with strong 
reliance on model guidance: first getting the storm track direction (or angle) correct, and 
then getting the storm speed correct. Figure 3-6 can be used to better understand how 
these two components of TC forecasting combine to determine an ultimate FTE, or an 
average track error over the course of a storm or a season. A consideration of the 
geometry depicted in Figure 3-6 (see caption for explanation) and the law of cosines 
yields Equation 3-1 
 

Equation 3-1.   
  
Equation 3-1 makes it clear that there is a non-linear (and thus, likely to be non-intuitive) 
relationship between accuracy in forecasting TC speed (achieving c = b), accuracy in 
forecasting track direction (achieving a = zero), and achieving overall accuracy as 
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measured by FTE (achieving a value of a = zero). Figure 3-6 depicts this non-linear 
relationship. 
 

 
 
 
Figure 3-6.  Forecast Track Error (labeled “Proportional Error” in the figure) shown as 
a function of TC track angular (or direction) error and TC speed error. All errors are 
given as proportional (or %) measures to depict the general case (thus, “Proportional 
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Error” is given rather than FTE in any particular unit of distance). The central “bottom” 
point in the graph (% Speed and % Angular errors = 0.0) results in a value of 
Proportional Error of 0.0, lying on the “floor” of the 3-D graph. 
 
Figure 3-6 is useful for obtaining an immediate appreciation of the non-linear relationship 
between speed and directional errors and overall FTE in TC forecasting, yet it is difficult 
to obtain a precise understanding of the tradeoffs involved. Figure 3-7 below is a more 
useful graphical representation for this purpose. 
 

 
 
 
Figure 3-7.  A 2-dimensional depiction of the contributions of forecast TC speed and 
angular (direction) errors on Proportional Error (or FTE). 
 
In both Figures 3-7 and 3-8, speed and angular errors are to be interpreted as follows. A 
speed error of 1.0 is an error of forecasting TC track speed to be twice its actual value, a 
speed error of 0.0 is forecasting track speed equal to its actual value, and a speed error of 
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-1.0 is an error of forecasting track speed to be 0.0 when the storm is actually moving. 
Angular error is 0.0 when the forecast track direction is correct, is 0.5 when the forecast 
is 90-degrees to the right of the best track, and -0.5 when the forecast is 90-degrees to the 
left of the best track.  
Figure 3-8 below summarizes the gist of this analysis of the combination of TC speed and 
directional errors on overall TC forecast track error (FTE). Each colored region depicts a 
region of approximately constant FTE. The current location of the TC is assumed to be at 
the lower center point in the diagram: Coordinates (0.0, -1.0). The next (known, or best 
track) location of the TC for the next forecast period is assumed to be at the center (0.0, 
0.0) point of the diagram.  
 
Note that, intuitively, this graph is symmetrical about the Y-axis, that is, for errors in 
either the rightward or leftward track directions. What is not so immediately intuitive is 
that the graph is not nearly symmetrical about the X-axis, that is, for errors 
underestimating TC speed (the lower half of the graph) and for those overestimating 
speed (the upper half of the graph).  
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Figure 3-8. Iso-FTE-Error regions in TC track forecasting as a function of errors in 
forecasting track direction or angle (X-axis), and errors in forecasting track speed (Y-
axis). The current TC location (at the time of the forecast) is at location (0.0, -1.0) or the 
lower-center of the diagram, and the true (best track) location at the forecast lead-time is 
at the center of the graph (0.0, 0.0). 
 
Figure 3-9 can be read as a mapping of a non-linearly shaped “penalty function” for 
errors in forecasting TC speed and direction, clearly showing that these errors combine in 
complex ways to determine ultimate FTE. During observations and interviews at JTWC, 
it was evident that TDOs often have strong intuitions about the behavior of TCs they are 
forecasting, and even when model guidance (either model consensus, or the guidance of a 
particular model) should be followed and when it should be not.  However, no 
procedural, training, or technological guidance was observed that would provide TDOs 
with complementary intuitions about how (relative) errors in both their TC speed and 
direction forecasts would be penalized by the overall mean track error statistics that 
would ultimately be used to assess JTWC’s forecasting performance.  
 
For example, it is readily seen from Figure 3-8 above that an angular or directional error 
of a particular degree or size will be penalized more heavily in the assessment of mean 
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track error when the speed of a TC is high, as compared to when a TC is moving more 
slowly. This may have implications for how a TDO might best “hedge his bets” in times 
of high forecast track uncertainty, and perhaps even for a consideration of whether mean 
forecast track errors may be somewhat artificially inflated during periods when TC 
speeds are greatest during dissipation and poleward curvature over open oceans. 
 
3.3 Summary 
 
To this point, we have shown that the manner in which JTWC forecasts are assessed: 
 
          A) is inconsistent with the intuition that high levels of performance remain 
   achievable by a forecast system that suffers from some level of imprecision 
   as long as the track errors associated with this impression or inconsistency 
   are unbiased (i.e., tend to “cancel out” or center on) the best track location. 
   Instead, as shown in Figure 1, FTE for every forecast location has only 
   non-negative values and thus various errors, such as to the north and south, 
   and to the east and west, do not cancel but sum. Said in other terms, the lay 
   or intuitive understanding of how errors of accuracy and precision combine 
   to yield a scalar value of overall errors does not apply to JTWC performance 
   assessment. 
 
         B) is inconsistent with the assumption that high levels of performance remain 
  achievable by a forecast system that may be unaware of non-linearity in the 
   manner in which forecasts of TC speed and direction combine to determine 
  overall mean forecast track error. It is just as natural and expected that TDOs 
  decompose the TC track forecasting task into individual components of 
  direction and speed as it is to note that golf putters (and golf putting 
  instruction) does so. Given the non-linearity involved, without additional 
  training or technological support, it is too much to ask for forecasters to 

determine how to use a unified, scalar measure of track error to learn to adjust his   
or her separate forecasts of both TC speed and direction. 

 
It has been established that TDOs at JTWC work in an environment that is extremely 
unforgiving of error, and especially (and possibly even counter-intuitively) of errors 
associated with inconsistency. In addition, the mean track error statistic used to evaluate 
JTWC forecasting performance may not be fully intuitive in the manner in which it 
excessively punishes even a very infrequent number of large errors against a background 
of a very high number of highly accurate forecasts. Finally, this scalar mean track error 
measure, considered as potential feedback from which to learn, is not particularly 
diagnostic and focused with respect to how TDOs conceive of TC behavior and their 
prediction, namely, in terms of movements with a particular speed and direction. 
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4. A Baseline for Comparison in Naval Operations 
 
We bring to this study of TC forecasting at the JTWC some previous experience in 
conducting research on time-stressed judgment in US Naval operations. In 1988, the USS 
Vincennes mistakenly shot down an Iran Air commercial jetliner over the Persian Gulf. 
As a result, the U.S. Office of Naval Research established a research program on Tactical 
Decision Making Under Stress, or TADMUS. 
 
Our TADMUS research was one of the many efforts initiated and supported under the 
overall program (for a comprehensive account of TADMUS research see Cannon-Bowers 
& Salas, 1998).  As described in a chapter written with our colleagues in that volume 
(Kirlik, Fisk, Walker, & Rothrock, 1998; also see Bisantz, Kirlik, Gay, Phipps, Walker & 
Fisk, 2000), one of the initial steps in our own research was to visit a naval pre-
commissioning team training site, consisting of a full-scale hardware and software 
simulation of a ship-based Combat Information Center (CIC).  At this site entire CIC 
teams received tactical decision-making and crew coordination training just prior to 
taking to sea and conducting active operations. We focused our observations and 
subsequent research on the task of the Anti-Air Warfare Coordinator (AAWC), who was 
responsible for using a computer workstation containing a radar display and a wide 
variety of other information sources to make identification judgments of initially 
unknown objects, called “tracks,” in the environment of his or her ship.  
 
Through field observations, interviewing performers and trainers, preliminary task 
analysis and a review of the literature, we determined that the central task of the AAWC 
was largely consistent with the image of judgment portrayed by Brunswik’s lens model 
(Brunswik, 1955; also see Kirlik, 2006 for a wide variety of applications of the lens 
model in technological systems and workplaces). A primary challenge faced by this 
performer was to use multiple, locally (or “proximally”) displayed information sources 
(or “cues”) of various degrees of reliability (or “ecological validity”) in order to identify 
remote (or “distal”) environmental objects, in this case, the identities and properties of 
tracks presented on a radar display.  Modeling cognition in this case, or more specifically, 
judgment under uncertainty, is the focus and purpose lens modeling, to which we will 
return in a following section. 
 
But at this level of description, the parallels between the task of the AAWC performing in 
a CIC filled with graphical and numerically displayed information and a TDO performing 
at the ATWC should be evident. Both are faced with the difficult challenge of using a 
wide variety of information sources of varying levels of validity to try to infer the 
behavior of remote systems having a only a limited degree of predictability. Successful 
performance in such cognitively challenging tasks is known to be depend on having the 
knowledge required to perform at a high level, as well as the ability to execute one’s 
information processing using that knowledge in a highly consistent fashion. 
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4.1 Knowledge versus Execution 

A common distinction is made between two factors limiting performance in cognitive 
tasks, and especially those performed in dynamic environments under time stress: the 
content knowledge required for high levels of accuracy, and the efficiency or consistency 
with which knowledge-based performance strategies are executed. Ideally, technological 
design and training interventions should selectively address whether observed human 
performance limitations are due primarily to deficits in task knowledge, or instead due 
primarily to the inability to apply what is known to the task at hand in highly consistent 
or repeatable fashion. Of course, it may be the case in any particular instance that both of 
these factors may play a role. 
 
To illustrate this distinction, which plays a fundamental role in the analysis and modeling 
that follows, consider the task of performing a series of 100, 2-digit multiplication 
problems (e.g., 12 x 35, 91 x 11) using pencil and paper. Imagine that two groups of 
subjects in a laboratory experiment were asked to perform this task: elementary school 
children who had only recently learned multiplication, and college seniors. Also imagine 
that each group was asked to perform this task under two conditions: in the first, one hour 
was allotted for the task, while in the second, only 5 minutes was allotted. What results 
would we expect to see? For the purpose of this example, assume that task knowledge 
corresponds to knowledge of how to multiply any two single digits along with a strategy 
for correctly performing 2-digit multiplication (carrying, and so forth). What might one 
expect the results of such an experiment be? 
 
First, one would (hopefully) expect that college seniors would perform this task nearly 
flawlessly when given one hour to do so, indicating that they not only possessed the 
necessary task knowledge, but were also able to execute their knowledge-based strategies 
in a nearly flawless manner. In contrast, we may expect a higher proportion of errors in 
the elementary student group. A detailed analysis of these latter errors could be used to 
reveal whether, for any particular student, the errors were systematic in some fashion 
(e.g., forgetting to carry, erroneous knowledge of what 7 times X equals, and so on). Any 
such systematic errors would signal knowledge deficits, as opposed to error patterns 
appearing unsystematic or random (e.g., a child who got the same exact problem right 
twice but erred the third time), which would more likely signal deficits of execution. 
 
Now consider the results one might expect to see in the 5-minute condition. Almost 
certainly, we would expect both groups to make more errors. But consider the college 
student group. Does this result indicate that they somehow lost some of their knowledge 
of multiplication? Unlikely. Instead, it is more likely that their errors would be largely 
non-systematic; i.e., slips rather than mistakes, because they had previously demonstrated 
complete knowledge required for the multiplication task.  
 
Turning back now to the dynamic, time-stressed CIC and JTWC contexts and the AAWC 
and TDO judgment tasks, important implications for technology design, operating 
procedures, and training could result if we could tease apart whether any observed 
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performance limitations were due largely to knowledge deficits, or instead to failures to 
successfully execute judgment strategies using this knowledge.. As demonstrated in the 
following, the lens model is useful in this regard since it provides a means for 
decomposing judgment performance into the quality of a performer’s task-relevant 
knowledge and the quality of a performer’s ability to make consistent judgments on the 
basis of this knowledge. This may be an especially useful distinction to be able to make 
when studying judgment under conditions of high information load, time stress, and 
uncertainty characteristics of many technological, operational contexts such as the JTWC. 
 
In the context of the lens model, “knowledge” is taken to mean knowing which of the 
many candidate judgment cues or information sources are useful, their relative reliability 
or ecological validity, and how they should be weighted and combined to arrive at a 
judgment. It is also important to mention that lens model analysis also allows one to 
diagnose the extent to which observed performance limitations are not due to knowledge 
or execution limitations on the part of the human at all, but are instead due to inherent 
uncertainty in the performer’s task environment. In such cases, training is insufficient to 
improve judgment performance. Here, performance can be improved only by enhancing 
the overall reliability of the proximally displayed information (e.g., by improving or 
adding sensor or display technology, the development and implementation of superior 
numerical TC models to provide improved guidance, etc.). 
 
4.2 CIC Modeling and Results: Implications for the JTWC 
 
Figure 4-1 provides a graphical depiction of the lens model created specifically for 
describing AAWC performance in the CIC track identification task. The left side of the 
figure depicts the model of the environment, which describes the relationship between the 
judgment criterion value (e.g., friendly, hostile, commercial airliner) and the cue values 
available at the time a judgment was made. The model of the human, shown on the right 
side of Figure 4-1 represents the relationship between the cue values and a participant’s 
judgments (the judged criterion value), and represents the participant’s policy or strategy. 
In these two models, the actual criterion value and the judged criterion value are 
represented as linear combinations of the cue values. Thus, these two models are linear 
regression models of participant judgments and the environmental criterion.  
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By comparing aspects of these two linear models, the relationship between human 
judgment policies and the structure of the environment can be described. This 
comparison is performed using the lens model equation (LME): 
 

 
 
In this equation, ra, known as achievement, measures how well human judgments 
(predictions, forecasts, etc.) correspond to the actual values of the environmental criterion 
to be judged. Achievement is shown in Figure 4-1 as a overarching curved line at the top 
of the figure linking judgments to criterion values. In the track identification task, 
achievement corresponds to how well participants judged the actual identity of the track. 
This measure (ra) is calculated as the bivariate correlation between the participants’ 
judgments and the values of the (actual) environmental criterion. In a TC forecasting task 
at the JTWC, achievement would analogously be measured in terms of bivariate 
correlations between forecasted storm properties (e.g., intensity, location, etc) at 
particular lead-times, and their “ground truth” values as determined by post-hoc analyses 
of best track. 
 
Lens model parameter G, often called knowledge, measures how well the predictions of 
the model of the human judge (again, “predictor,” “forecaster,” etc.) match predictions of 
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    Figure  4-1.  Lens model depiction of CIC track identification task as performed by an AAWC. 
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the model of the environment. G, shown in Figure 4-1 as a line linking predicted 
judgments to predicted criterion values, measures how well the linear model of the judge 
matches the linear model of the environment: if the models are similar, they will make 
the same predictions. Thus, it reflects how well a modeled judgment policy captures the 
linear structure in the environment, and can be seen as measuring a judge’s knowledge of, 
or adaptation to the environment’s cue-criterion structure. G is calculated as the 
correlation between the predictions of the participant model (predicted judgments) given 
a set of cue values, and the predictions of the environmental model (predicted criterion 
value) given the same set of cue values.  
 
Re, shown as a line in Figure 4-1 linking actual to estimated criterion values, measures 
how well the value of the environmental criterion can be predicted with a linear model of 
the cues. That is, it measures the adequacy of a linear model of the environment. Thus, 
the value of Re for the track identification task measures how linearly predictable a 
track’s identity was given its cue values, and is considered a measure of environmental 
predictability. Re is computed as the correlation between the predictions of a linear model 
of the environment (e.g., predicted criterion values) given a set of cue values, and the 
actual criterion values. 
 
Rs, shown in Figure 4-1 linking human to predicted judgments, is a parallel measure to Re 
and provides an estimate of how well human judgments can be predicted with a linear 
combination of the cue values. For the CIC track identification task, Rs described how 
well an AAWC’s identifications of a track could be predicted given a linear combination 
of the track’s cue values. Higher Rs indicates that an AAWC made judgments more 
consistently with respect to a linear model. Rs is considered a measure of cognitive 
control or the consistency with which a judgment strategy is executed by a performer. If a 
performer’s behavior is not well predicted by a linear model of the participant’s own 
judgments in tasks where evidence exists that a linear-additive model should be 
descriptive, then a low value for Rs suggests that a performer is not consistently 
executing the strategy represented by that model. Rs is computed as the correlation 
between the outputs of a linear model of a performer (e.g., predicted judgments) given a 
set of cue values, and the actual judgment. 
 
Finally, C, shown in Figure 4-1 linking the differences between predicted and judged or 
actual criterion values, measures the extent to which partipant’s judgment strategy and 
the environmental structure share the same unmodeled (in this case, nonlinear) 
components. Nonlinear cue usage is nearly always found to be negligible. 
 
The lens model equation indicates that each of these factors (environmental 
predictability: Re, cognitive control or consistency of strategy execution: RS, and modeled 
knowledge: G contributes to overall task achievement (ra), and each of these factors can 
be individually estimated in analyzing judgment performance.  
 
Data on track identification judgments from a simulation of the CIC task context were 
analyzed using the lens model, with results as shown in Figure 4-2 below. 
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Figure 4-2.  Lens model of the CIC case, and results showing that the primary factor 
distinguishing high from low achievement (“DM” for decision making) was cognitive 
consistency (or “participant control”), rather than task knowledge (or G). 
 
Although time did not permit an analogous lens model analysis of the JTWC context and 
TDO forecasting performance, there are no reasons to believe that the results of this prior 
CIC research would not apply to the JTWC, as it is a similarly information-rich, yet 
uncertain and time-stressed work environment. TDOs are knowledgeable about their 
tasks, yet, aside from the ATCF itself, have insufficient resources (and in multi-storm 
situations, perhaps even insufficient time), for consistently navigating among the highly 
diverse (in both content and form) sources of information available to them, for 
integrating this information cognitively (thus the spontaneous creation by JTWC staff of 
a Google Earth tool for integrating this information externally), nor for consistently 
implementing the results of cognitive information processing into forecast products.  
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5. Conclusions and Recommendations 
 
Based on a review of available documents, information gathered at the JTWC through 
observations, interviews, discussions, surveys of information technology and interfaces 
on the watch floor, a variety of mathematical analyses and related research findings 
presented in earlier sections of this report, the best available theory of human judgment 
(forecasting) under uncertainty, and best practices in human factors engineering, the 
following conclusions and recommendations are provided: 
 
5-1. TC forecasters at the JTWC operate in an environment that rewards both accuracy 
and consistency or repeatability. While the accuracy dimension is highly intuitive, the 
manner in which inconsistency contributes to inflating mean error is less intuitive: 
 
 5-1-1.  Every TDO may not fully appreciate that, unlike the lay notion of 
  imprecision caused by inconsistency, errors of positive and negative 
  sign (north versus south, east versus west, slow versus fast storm 
  motion, under- versus over-estimation of intensity) do not cancel 
  out, but instead always sum. 
 
5-2. TC forecasters at the JTWC have a natural tendency to decompose track  
         forecasts into two dimensions: movement direction and speed. As such, the 
         intuitive coordinate system in which TDOs conceive of, and predict, storm 
         movements is inherently polar, rather than Cartesian. Mean track error is 
         calculated in terms of Euclidean distance in a Cartesian coordinate system. 
         As such, there is a mismatch between the way these professionals conceive 
         of the task, and how they are evaluated. Analyses have been provided that 
         demonstrate that the nature of this mismatch is inherently non-linear, and 
         thus not likely to be intuitive to every TDO. This compromises the ability of 
         a TDO to learn most effectively from mean track error feedback (“how much 
         was due to misjudging speed?” - how much direction or curvature?”), and 
         compromises the TDOs ability to make track forecasts that are sensitive to the 
         non-linear penalty function that maps storm speed and direction errors into 
         a scalar value of mean track error. A variety of training or interface design 
         interventions could address this issue. 
 
5-3.  Ample evidence from a variety of directions all points to the conclusion that  
         inconsistency is the primary factor limiting JTWC forecast performance as 
         assessed in terms of mean track error. Inconsistency can be mitigated by: 
 
 5-3-1.  A fully integrated suite of information displays with common geo- 
  referencing, scaling,  syntax, etc. Ideally, displays should carry a 
  common coding scheme for the age of data, and, if measurable, 
  the validity or certainty level of information. 
 
 5-3-2.  Standard operating procedures that are more precise in terms of 
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  exactly which information sources should be consulted in which 
  contexts, in which order, along with associated checklists. 
 

5-3-3.  Minimizing non-mission critical interruptions of the TDO on the JTWC 
watch floor.  

  
5-4.  Technology to allow the TDO to automatically issue CONW forecasts is needed. 
          The question of how JTWC’s performance compares with CONW cannot be 
          definitively answered until this feature is available, due to the current level of 
          TDO participation in the construction of a CONW forecast, even if the TDO has 
          no reason or desire to over-ride CONW. 
 
5-5.  With the above technology in place, it will then become possible to empirically 
          determine the degree to which additional TDO intervention adds or subtracts 
          value from CONW, and in which situations. Various experiments can be  
          conducted, regardless of which (CON, SCON, manual) of various forecasts are 
          formally issued by JTWC. These data should be subjected to additional analysis 
         and modeling. 
 
5-6.  TDOs currently combine information from their expertise and intuition with 
          guidance provided by numerical models in a largely covert, unsupported, and 
          purely intuitive fashion. This information integration task can be formulated 
          as an optimal belief updating task, using the formalism of Bayes Theorem. If 
          data were collected so that the various quantities necessary to implement 
          Bayes theorem were available, then the belief updating and information  
          integration process could be aided with the design and implementation of 
          a software tool to analytically support this challenging aspect of the TC  
          forecasting task. Intensity forecasts would provide an especially attractive 
          arena for testing this approach, as hypotheses about intensity changes are 
          more readily endurable (increase, decrease, no change) than are hypotheses 
          about future track. 
 
5-7.  Mean track error is a deterministic assessment of what is known to be an 
          inherently probabilistic (uncertain) forecast, whether all current forecast 
          products are formatted in these terms or not. Alternative forecast products 
          for better communicating forecast track uncertainty should be explored. 
          Alternative measures of assessment of probabilistic forecasts should also 
          be explored. 
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